
Service Discovery and Composition
in Smart Cities

Nizar Ben-Sassi1, Xuan-Thuy Dang1, Johannes Fähndrich1, Orhan-Can
Görür2, Christian Kuster1, and Fikret Sivrikaya1

1 GT-ARC gGmbH, Berlin, Germany
2 DAI-Labor, TU Berlin, Germany

Abstract. The ongoing digitalization trend has given rise to the con-
cept of smart cities, targeting the interconnection of city infrastructure
and services over a digital layer for innovative technological solutions as
well as improvements on existing facilities in cities. This article inves-
tigates the critical information system constituents of smart cities that
facilitate the holistic integration of its ecosystem and resources with the
aim to foster dynamic and adaptive software. We identify three main
enablers in this direction: (i) semantic functional description of city ob-
jects, representing physical devices or abstract services, (ii) a distributed
service directory that embodies available city services for service lookup
and discovery, (iii) planning tools for selecting and chaining basic ser-
vices to compose new complex services. We provide an overview of the
approach adopted in our ongoing smart city project for each of these
three dimensions. We also revisit the available tools and results from the
research literature on each topic.

Keywords: smart cities, service discovery, service composition, seman-
tic service description, adaptive planning

1 Introduction

The perennial trend of urbanization has been transforming human life for many
decades, whereby the city infrastructure and services become increasingly more
integral parts of our lives in the form of transportation systems, energy systems,
and many more. More recently, the rising trend of digitalization brings new
dimensions to urbanization; a concept typically captured by the term “smart
cities”. Advancements in information and communication technologies (ICT),
such as the Internet of Things (IoT) [1], cloud computing, and mobile computing,
provides a foundation for the digitalization of city systems. This often results in
better resource utilization among infrastructure providers through autonomous
processes and more flexible interaction between citizens, authorities and other
stakeholders through ubiquitous access to information. However, the abundance
of city data makes information management one of the central challenges in
enabling cross-domain collaboration. With the lack of unified data and service
integration platforms, the transformation to digital cities often results in specific
applications that represent isolated service and data silos.

In general, the information systems of a smart city can be in the form of
physical devices with ICT capabilities, entirely virtual online services, or a com-
bination of both, which we commonly refer to as Smart City Objects (SCO) in
this article. A smart city object can be as simple as a temperature sensor pro-
viding data to the cloud or as complex as a trip assistance service that stems
from a well-crafted composition of many other SCOs from the transport, traf-
fic, energy, and environment domains. The project Intelligent Framework for
Service Discovery and Composition (ISCO), presented in this paper, aims to
develop an open and extensible platform together with supporting tools for the
creation and holistic interconnection of smart city objects from different sectors
and stakeholders. This objective translates into moving away from fragmented
IoT solutions and isolated data silos in cities towards a more integrated and har-
monized smart city ecosystem. ISCO enables stakeholders from diverse domains
to provide novel, efficient and dynamic services, optionally composed of other
existing services in the smart city. One of the main challenges of such a platform
is ensuring its scalability while enabling efficient development, deployment, and
discovery of smart city objects.

In this paper, we review such smart city challenges, solution approaches, and
suitable tools as well as an in-depth overview of our proposed contributions in the
ISCO Project. In particular, after a high-level overview of the ISCO approach to
smart city service integration (Section 2), we present a unified semantic model
for SCOs based on semantic web technologies (Section 3), a scalable distributed
architecture for SCO discovery based on information centric networking (Section
4), and a two-level planning approach for orchestrating through both generic and
application-specific service ontologies that also incorporate quality of service
(QoS) attributes (Section 5).

2 Background and ISCO Approach

The smart city concept has been attracting strong attention of the research
community from a large variety of research fields, particularly in the computer
science and information systems disciplines [2, 3]. On the other hand, a growing
number of smart city initiatives is spawned around the world in recent years.
A report published by the European Parliament [4] as early as in 2014 explores
smart city initiatives in terms of their impact on the objectives defined in the
European Growth Strategy 2020, covering more than 50 smart city projects that
were conducted in 37 cities. Given the vast breadth and depth of the smart city
scope, we do not intend to provide a comprehensive background here, but refer
the readers to the surveys on the topic, e.g., [2, 5, 6], for a detailed coverage of
the socio-technical systems of smart cities.

The increasing adoption of digitalization and the existing smart city appli-
cations have pointed out several challenges in building such IoT frameworks in
cities, ranging from security and network reliability to data management aspects.
While there have been many approaches proposed to deal with these challenges,
a suitable collaboration scheme between the existing IoT solutions, heteroge-

neous devices and services remain as an open issue [6]. There is a growing need
in harmonizing and integrating the solutions from different perspectives and do-
mains in order to prevent further fragmentation in this field. ISCO Project’s
approach towards addressing this need of integrated solutions is to design and
develop open platforms and tools for interconnecting heterogeneous entities in a
city through what we call smart city objects. While the project also covers the
networking and security aspects for the interoperability and accessibility of all
city objects, our focus in this paper remains on the three core modules of ISCO
– represented in Fig. 1 by the Smart City Object API, Service Directory, and
Agent Domain components.

Fig. 1: ISCO Architecture: Overall Interaction of the Main Components

In the high-level service workflow of ISCO presented in Fig. 1, service providers
can introduce their service descriptions using our relevant domain models, after
which a software agent representation of the service is automatically created
under the ISCO agent domain. The description is also saved within the Service
Directory (SD) in the Web Ontology Language (OWL) format similar to [7]. The
SD is structured as a dynamic collection of distributed nodes (typically hosted by
service providers or other market players throughout the city) and serves as the
repositories and request points for registered services. For example, Service A in
Fig. 1 is registered to the service directory node SD-1 as the closest SD instance.
Every service agent contains an instance of the ISCO Planner to request and
orchestrate services. Once a user makes a request, the agent forwards it to find
domain-related SCOs from its registered node. Then, the node may ask other
nodes in the SD, using an information-centric routing overlay, as described in
Section 4, finally returning a set of matching services. The access control module

filters out services that are not authorized for the requester. Finally, the domain
that includes the services with authorized access are returned. ISCO Planner
can now process the services first to filter based on their qualities then to find
an applicable orchestration of the services based on the user request. We present
the details on the inner-workings and the interactions of these components in
the remainder of the paper.

3 Semantic Description of Smart City Objects

Our fundamental understanding of a smart city is the interconnection of hetero-
geneous IT-enabled entities, namely physical devices as well as virtual services,
that provide a certain functionality: Smart City Objects (SCO). The functionali-
ties provided by the individual entities overlap and are not known a priori, which
complicates and impedes the efficient use of them. Consequently, to enable other
entities to utilize such a SCO, an appropriate technical representation is needed.
In addition, an API should facilitate the creation of and access to SCO for
ISCO-compatible applications; something that other approaches often neglect.
The representation and the concept of the API are discussed in the following.

For a reasonable way of sharing knowledge and modeling SCOs in a heteroge-
neous and dynamic environment, the usage of ontologies is the de-facto approach;
domain and data models described in an ontology provide a sophisticated seman-
tic description that can be parsed by an application. Existing approaches that
model the Internet of Things (IoT) domain in a descriptive way commonly adopt
the IoT-Lite ontology [8], which is utilized in FIESTA-IoT3. The lightweight ap-
proach gives a good insight on how to efficiently classify the different accessible
devices in a smart environment and what properties such a model should provide
at least, but lacks a functional description that can be called by a requester.

In describing the SCOs in terms of their functionality, it seems the best
approach to see them as (web) services. The service-oriented computing commu-
nity developed well-established standards to describe and invoke functionalities,
such as WSDL/SOAP and REST services, but these standards do not suffice
a smart city. Semantic descriptions of software services provide the needed ad-
ditional information layer, for which several approaches have been proposed in
recent years. Amongst others, these are OWL-S [9], WSMO [10] and SAWSDL4,
which extend typical service information by preconditions and effects, and define
input and output information in a more expressive ontology language, such as
the Web Ontology Language (OWL) [11]. However, these semantic approaches
only address web services and not the smart city domain in particular. There-
fore, in our approach we extend the OWL-S ontology for smart cities. Nambi
et al.[12] describe a semantic knowledge base for IoT and use the OWL-S on-
tology to describe services, similar to our approach. However, the authors focus
on describing the domain holistically with contextual information, and therefore
create a rather complex multi-layered ontology; furthermore, orchestration of
services is neglected in the presented architecture.

3 http://fiesta-iot.eu/ 4 http://www.w3.org/2002/ws/sawsdl/

Our extension is more geared to IoT-Lite with focus on orchestration; it
integrates devices and further extends the concept of a service by attributes we
identified as needed by a SCO, e.g., the location or the accessibility. An overview
of our ontology can be seen in Fig. 2, where the central class is SmartCityObject
that is a subclass of the OWL-S classes Service, ServiceProfile, Process and
Result. This means that in terms of OWL-S, SCOs represent both the service as
well as the underlying process with its result and, on the other hand, guarantees
that SCOs can be used by systems that understand OWL-S services.

Fig. 2: Centralized Overview of the Smart City Object Ontology

Besides virtual or digital services, a significant part of a smart city is rep-
resented by devices. Since we model the domain in terms of their functionality,
we distinguish here between Actuators and Sensors that only differ in terms of
what they provide: An actuator changes the world’s state, thus has an effect,
while a sensor measures a kind of quantity, thus only provides some output. By
this definition we are able to describe smart city devices in the same way as
virtual services.

The large amount of potential SCOs with similar or identical functionalities
in a smart city pose a challenge on service discovery and planning operations.
Here the design of the semantic model plays a crucial role, as the amount of
returned SCOs can be reduced drastically with the possibility for a fine-grained
description of the required service. In this connection, our model allows assigning
SCOs to (multiple) sub domains of the universal smart city domain, whereby
we refer to the overview made by Neirotti et al. [13] for the individual domains.

Furthermore, devices can refer to a type in a taxonomy to better describe their
nature. As another important feature, non-functional attributes that facilitate a
better selection of SCOs are related to the geospatial information of the entities,
i.e., the regions for which a SCO provides its functionality as well as the location
of physical devices, whenever applicable. Lastly, management attributes such as
the provider of the SCO, the type of accessibility to provide security, attributes
for grouping SCOs and unique identifiers are adopted to ensure a working and
efficient autonomous utilization of such entities.

Even for entities that are functionally equivalent, non-functional attributes,
or quality of service (QoS) parameters, can be used to further narrow down the
required SCO. While there are many existing approaches for QoS ontologies [14,
15], a description of our QoS model would go beyond the scope of this paper.
Nevertheless, the processing of these criteria will be addressed in Sec. 5.

Smart City Object API. The Smart City Object API facilitates the usage of
SCOs by city applications and stakeholders. Because of the special requirements
of a smart city, especially the huge number of entities, the SCOs are stored in a
distributed service directory, as will be explained in the next section. The API
provides methods for easy access to city objects: SCOs can be queried directly
by their ID, or a more generic search can be triggered based on attributes such as
the domain, input and output parameters, quality parameters, and overall score,
after which the matching SCOs are returned. The API also converts between
the ontology representation used in the service directory and an object-oriented
representation that can be used directly by application developers. In summary,
the SCO API functions as a bridge between the other components in the ISCO
architecture to allow for easy implementation of ISCO-compatible applications
that build on the functionalities provided by smart city objects.

4 Scalable Service Lookup and Discovery

In this section, we discuss challenges of managing smart city information and
propose a design for city-scale distributed directory of smart city objects for
lookup and discovery, which facilitates dynamic end-to-end service composition.

Smart city systems have to deal with billions of devices and services, which
are often combined together in order to provide city applications. Such devices
and services may need to be uniquely identifiable for tracking or establishing
connections, for which the naming and addressing mechanisms are designed.
The former is concerned with creating a labeling scheme or attribute that differ-
entiates an object in a local or global scope, while the latter is concerned mainly
with locating the object or service and enabling their interactions. Most of the
existing IoT or smart city solutions are built on the currently well established
architectures and data communication technologies such as Service Oriented
Architectures (SOA) and the Internet Protocol (IP). While those technologies
have well-defined mechanisms to address and locate devices and services, SCOs

pose new challenges to their management, ascribed to the smart city service re-
quirements: i) heterogeneity of devices and services, ii) complex human-service
interactions and behaviors, iii) cross-domain integration, and iv) highly dynamic
and mobile environment.

Due to heterogeneity and cross domain requirements, smart city IoT solu-
tions rely on an object discovery infrastructure to provide descriptions about
their attributes, location, and access methods, among others. Depending on the
application, discovery can be a stand-alone service or integrated with the entity
management and gateway functions of an IoT middleware. Nevertheless, it aims
at providing scalable services for object registration, mapping, and lookup. As
such, object descriptions can be distributed based on logical domain, geograph-
ical location, or platform specific hierarchy:

– Domain-specific discovery builds on the Domain Name System (DNS) of the
Internet and is adopted by some projects such as IoT6 by leveraging IPv6 and
proposing service discovery (DNS-SD)5 and mDNS6 discovery protocols. The
Object Name Service (ONS) [16] used in SmartAgriFood is a similar service
to DNS for discovery and resolve physical object with EPC code. A local
ONS server looks up product descriptions for scanned code by mapping it
to a set of resource descriptions (URI) provided by external services.

– Geolocation based discovery is common in device centric and location based
applications. The objects are addressed based on their notation of geographic
points, areas, or network cluster. While the indexing and geo-discovery are
straightforward, additional resolution infrastructure is still required to pro-
vide operational details of the resources, as in, e.g., IoT-A and BUTLER
projects.

– Service Directory(SD) A directory structure holding rich descriptions of IoT
entities is often required in addition to previous distribution approaches.
Beside accessibility description, attributes about the entities and their rela-
tionships provide data needed for, among others, management, service com-
position logic of the applications. Semantic web approach is adopted by the
projects and is referred as semantic discovery. OWL-based ontologies capture
models of physical, logical entities and their relationships.

ISCO Service Directory based on an ICN Overlay We propose an IoT
service directory (SD) in ISCO that self-organizes the distributed storage and
retrieval of smart object descriptions. Its flat architecture makes the directory
eligible for universal service discovery for IoT by removing the dependency on
discovery mechanism from specific applications and domains. Before we present
our SD design in ISCO, we first provide a short introduction to ICN as an
important enabler for our design.

Information-Centric Networking: The underlying principle of ICN is that a
communication network should allow a content consumer to focus on the data
it needs, named content, rather than having to reference a specific, physical

5 http://www.dns-sd.org/ 6 http://www.multicastdns.org/

location where that data is to be retrieved from, i.e., named hosts, as in current
Internet architecture. ICN offers a wide range of benefits, e.g, content caching to
reduce congestion and improve delivery speed, simpler configuration of network
devices, and building security into the network at the data level. Communication
in ICN is driven by data consumers, through the exchange of Interest (INT) and
Data (DATA) packages. Both types of packets carry a name that identifies a piece
of data. The consumer sends an INT with the name of the data it needs. When an
intermediate node receives the INT, it looks for the data in its content store (CS).
If the data is not found, it forwards the INT to the next nodes and keeps track
of the incoming and outgoing network interfaces for this data in pending interest
table (PIT). A series of such forwarding actions creates a breadcrumb path the
INT has passed. When the INT arrives at the source node, the requested data
is put into DATA and sent back the path towards the consumer. Intermediary
nodes on the path cache the DATA in their CSs for subsequent INTs.

We apply ICN’s data centric paradigm, more specifically the Named Data
Networking7 as a realization of the ICN approach, for the distribution of object
descriptions among SD-Nodes in our service directory design. The solution can
take advantage of the aforementioned ICN features for IoT requirements due to
the data-centric nature of many smart city and IoT applications. Based on those
features, refined mechanisms are designed for SD functionalities, i.e., developing
attribute-based object query methods and content caching strategies for reduced
storage overhead as well as increased responsiveness and accuracy.

ICN based Naming Scheme for City Objects. In the service directory
infrastructure, the data to be exchanged are descriptions of services and devices,
which mainly contain various attributes. Using ICN enables the SD to decouple
the data from locations of the nodes that store the data while taking advan-
tage of ICN forwarding and caching mechanisms. As detailed previously, each
SD-Node is an ICN router, which serves the requests for object’s description by
its name, or forwards the requests towards other nodes holding the description.
Therefore, the design of a naming scheme affects the performance of objects
discovery. ICN naming adopts the semantics of Universal Resource Identifier
(URI) scheme. However, the host part does not imply location of the resource,
but rather identifies its owner or search domain. The attributes part enables the
expression of resource attributes that can be used to look up and discover the
resources regardless of where they are stored. An ICN name is shown below,
which contains rich semantics describing a sensors domain, location, type, etc.

icn://com.gtarc.iot/sensor?geo:lat=35,geo:lon=11,radius=1km,scale=censius,timestamp=mmdd,version=1

Domain ID Geographical Attributes Application Specific Attributes

Matching of query attributes and the semantic descriptions is handled by
a matcher component in each SD-Node. For this purpose, attribute names can
refer to their semantic description by using popular ontology prefixes, e.g., the
geo namespace in the example. Depending on the use-case, a strategy to store

7 https://named-data.net/

descriptions and to forward the requests based on object attributes can be dy-
namically configured. Additionally, various caching and forwarding strategies can
be designed to best serve the query demands and SD infrastructure performance.

Service Directory Node Architecture. The ISCO service directory is
constituted by a distributed collection of SD nodes as depicted in Fig. 3. The
design of an individual SD-Node, which contains semantic descriptions of SCOs,
is shown in Fig. 4. We employ a triple store for the storage and query of SCO
attributes. Various interfaces are implemented for respective transport protocols
for the query and distribution of the descriptions. Each functionality is im-
plemented as a modular component based on the OSGI platform architecture.
Descriptions of most important components are provided next.

SA

Contract

SA

Contract

SA

Contract

SA

Contract

Service Directory Infrastructure

A B

ICN-Network

Inter-/IoT Network

Application Protocols
MQTT / CoAP / IP

Re
gis

tra
tio
n Query

INTDATA

Ia, Oa, Pa, Ea --> Endpoint-A
Ic, Oc, Pc, Ec --> Endpoint-C

Ib, Ob, Pb --> Endpoint-B
Ia, Oa, Pa --> Endpoint-A

Ia, Oa, Pa, Ea --> Endpoint-A
Ib, Ob, Pb, Eb --> Endpoint-B

Fig. 3: ICN-based Service Directory

Service Directory Node (karaf container)

Directory Manager

ICN Router

Name Handling
Strategies

PIT / FIB / CSSD-Nodes

SCO Models

Fig. 4: SD-Node Architecture

Triple Store (TDB) is a component of the Jena 8 project, which serves as a
high performance RDF store for the directory server. It provides an API as well
as a SPARQL interface for storage and query of semantic descriptions.

Matcher component implements mapping methods between requested search
attributes and suitable SCO descriptions, which are potential search results.
It handles queries from IoT service components and other SD-Nodes received
through different query interfaces.

ICN Router enables connectivity between SD-Nodes with ICN transport pro-
tocol to form a distributed SD infrastructure. Discovery of SCO descriptions is
realized by the exchange of interest messages with SCO names. The available
CCN-Lite [17] solution is extended with the implementation of strategies for
forwarding requests and caching SCO descriptions among SD-Nodes.

Query Interfaces provide distributed application protocols, which allow higher
level services to access SCO descriptions and ontologies. The protocols are imple-
mented for various application transport protocols, e.g., CoAP, MQTT, Rest. To
enable semantic expressions and functional description in the queries, the REST-

8 https://jena.apache.org/documentation/tdb/index.html

desc [18] approach is applied. It enables certain matching rules to be embedded,
which improves the accuracy of SCO matching and discovery.

Scalability. An ICN architecture, in contrast to a host-centric one, does not
dictate a predefined hierarchy, e.g., conformance with IP routing or a specific
discovery protocol (DNS), among others. This results in a flat network with self-
organized topologies. The attribute-based discovery only depends on how an
approach describes the devices and services, specifically, their semantic models,
matching approach, and strategies for information organization. Fig. 3 illustrates
a distributed SD infrastructure utilized by the ISCO platform, which is based on
multi-agent system architecture. The agents on the ISCO platform are logical
representations of SCOs. Once a service or device is made available, the agent
(A) registers its service in the SD by sending SCO descriptions to a nearby
SD-Node making it the source of the SCO description. Due to the flatness ICN
transport network, no constraint is given on the placement of the SD-Nodes.
Globally dedicated nodes or, if required, managed nodes for each local domain
or organization could be used. If a service (B) wants to look for another service’s
(e.g., A) description, it sends the request to a local SD-Node in an ICN interest
message. The request is forwarded to the source SD-Node of the description,
which results in replications of the description in the individual caches of SD-
Nodes along the query path. Forwarding and caching strategies can be adapted;
e.g., the choice of lifetime of the replicas implies a trade-off between the dissem-
ination of descriptions closer to requesting agents, and timeliness, consistency of
the information. Some caching approaches are discussed in [19]. Moreover, the
self-organizing topology allows additional SD-nodes to be added or removed as
required by deployment scenarios, querying patterns, among others. Applying
cloud computing or container technologies (e.g., Docker) enables elastic provi-
sioning of SD services.

5 Service Composition and Planning

Web service composition (WSC) has been widely applied [20] to create new
value-added services from existing atomic ones. The QoSs of all services involved
in this composition affect the quality of the composite service. In this section
we present the ISCO middleware planning layer which applies WSC to IoT
components. Planning in IoT environments is a challenging task: IoT instances
may appear, disappear or move, thus, the promised Service Level Agreement
(SLA) can change over time. Applying WSC in such a fragile heterogeneous
and dynamic environment requires an adaptive and self-optimizing architecture.
Therefore, we adopt an extended version of the MAPE-K [21] architecture by
IBM, which enhances the system with significant adaptation capabilities.

Implementing new services for smart cities is a complex task, as service devel-
opers have to identify and bind the required set of services and sensors with the
highest QoS/QoD out of millions of possible SCOs at design time. The imple-
mented services have a static binding to dynamic SCO instances and have there-

fore low adaptation capabilities and stability. Maintaining such services is also
costly. The service developers have to monitor the system dependencies to detect
qualitative or functional changes. Those changes require a code revision for the
sake of replacing misbehaving or outdated SCOs. The ISCO middleware eases
the implementation and deployment of such complex services by abstracting the
service and device layer allowing service developers to focus on the functional
and qualitative definition of their services.

Adaptation
Analyzer Planner Executor Adaptation

Monitor
Service

Directory

Application
UI

QoS
database

Knowledge
database

QoS
Monitor

Services
Monitor

Execution
Monitor

Context
Monitor

CO-FL

A-FL

M-FLMonitoring
Manager

deploy

update

m
onitor

ca
ll

request
composition

result

reference controles
input (A)

context
symptoms
(B)sensed

internal
context
(D)

update

up
da

te

context symptoms (C)Goal
Monitor

update

Fig. 5: An overview of the ISCO planning layer components

The ISCO middleware planning layer is responsible for generating a service
composition, involving different SCOs, that satisfies the specified – functional
and qualitative – application requirements at runtime. The adaptability of this
module is crucial, as it has to suit different contexts and serves a wide range
of applications with varying goals. We are therefore applying the DYNAMICO
[22] design guidelines for adaptive systems to enhance the planning layer adap-
tiveness. This reference model defines three levels of dynamics: the Objective
Feedback Loop (CO-FL), which is responsible for managing changes in control
objectives, the Adaption Feedback Loop (A-FL), which models the adaptation
mechanisms, and the Monitoring Feedback Loop (M-FL), which tracks context
and objective changes.

Objective Feedback Loop. In dynamic software systems, the adaptation goals
(or objectives) should be defined and monitored. These control objectives can
define functional system requirements or refer to non-functional system proper-
ties (e.g., QoS) [23]. The monitoring of these adaptation goals needs an explicit
formalization, which e.g., is accomplished in AI planning through a goal state.
The goal state contains the facts the system should achieve. In ISCO, we are
using an IOPE (input, output, precondition and effect) representation to de-
fine the functional goals (e.g., plan a trip) and QoS to state the non-functional

system requirements (e.g., trip cost and duration). During the execution of soft-
ware systems in dynamic environments, the adaptation goals might be affected
by several changes, including, but not limited to:

– Goal change: Because of the changes in the environment, a goal might no
longer be valid. Users can also explicitly modify the adaption goals.

– Goal no longer reachable: During the execution of a plan, the environment
might change, e.g., through disappearing services or changes in the condition
of the environment. Those changes might lead to situations where the goal
is no longer reachable, given the current plan.

– Goal order change: While executing a plan to reach a certain goal, the pri-
ority of goals might change, e.g., if the QoS of used services changes. With
a change in QoS the goal might become less attractive, and with that, a
new goal could be perused. By changing priorities, a certain plan might lose
effectiveness or efficiency.

An adapting system, especially in dynamic environments like the IoT, should
be able to monitor its goals and evaluate when to start switching objectives.
Switching a goal might cause the abortion, adaption or recreation of a plan, e.g.,
if weather change influences a part of a journey, and riding a bike is no longer
a valid option. In the DYNAMICO Framework [22] the CO-FL addresses such
problems.

Adaptation Feedback Loop. (A-FL) receives the adaptation goals from the
CO-FL and the monitored context information from the M-FL and selects the
appropriate adaptation mechanism to maintain or reach the system goals. Our
A-FL layer implements different approaches that enable the system to adapt to
system-wide changes. In this loop, the adaptation process might be initiated due
to changing control objectives or context information. The A-FL has four main
components introduced below:

Planner is responsible for combining SCOs by connecting their IOPEs for the
sake of generating new composite services that satisfy the client application
requirements. Our approach is extending the traditional QoS-aware WSC
to support IoT devices and sensors. The generated plans should fulfill the
functional and qualitative system requirements defined by the CO-LP. The
current implementation is graph based, and uses a Fast Forward planner [24]
to reduce the search space and fasten the system response.

Interpreter is responsible for the execution of the composite services. The ex-
ecution is monitored whereas the current state is forwarded to the analyzer
module. This process may fail or the results may deviate from the specified
goals. In this case, the adaptation analyzer should trace those deviations
and replace the missing or misbehaving components to maintain the system
robustness. The analyzer might also stop the execution process if needed,
e.g., if the adaptation goals were updated.

Adaptation Analyzer is the central component of the A-LP. This module
evaluates the current adaptation goals, selects the most suitable adaptation

mechanism and initiates the adaptation process. It also identifies and de-
ploys the required monitoring modules. This module stores – for each new
request – the generated service composition along with its global QoS in the
knowledge database. If the system goals or context are updated, the analyzer
will first search the knowledge database for a service composition that meets
the current system requirements. The freshness of the solution, if found, is
controlled. If the solution does not exist or is outdated, the planning process
is initiated. The generated plan is then forwarded to the interpreter; finally,
if the execution is successful it is stored in the Knowledge database. If the
execution fails, the planning process is re-triggered in order to replace the
unavailable service(s).

Adaptation Monitor checks the state of the adaption mechanism. The adap-
tion needs to change if the adaption mechanism itself is no longer adequate
for the system. This monitoring is done to observe the performance of the
adaption mechanisms in case the adaption mechanism itself needs to be
adapted. This inadequacy could be the case, e.g., if the goals or the con-
text change faster than the adaption can react. In this case, the adaption
mechanism might neglect an optimal solution to speed up the adaption. This
adaption mechanism is modeled in the planning component. Depending on
the heuristic used, the planning can adapt to goal changes, e.g., if different
quality parameters become important, or by adapting the planning param-
eters like relaxing the optimality of A∗ to a ε-admissible heuristic [25] to
speed up the search for a solution.

Monitoring Feedback Loop. Self-adaptive systems need to maintain their
context-awareness relevance, in order to adapt at runtime to changing context.
For the sake of preserving the system context-awareness, different monitoring
strategies might be applied depending on the current adaptation goals. The M-
FL is the context manager in the DYNAMICO reference model (see Fig. 5).
The M-FL deploys different context gathers, which monitors the current system
context, and reports updates to the A-FL. Our ISCO platform implements four
different monitoring components each of which is targeting a specific system
component or process:

QoS Monitor is responsible for monitoring the QoS parameters of the sup-
ported services and devices. The measured QoS at runtime may deviate
from the defined SLA used to generate a service composition, and should
therefore be updated. To guarantee optimality, the system has to adapt to
these changes. By changing QoS, the service composition has to be adjusted
and the monitored QoS has to be taken into account during the planning pro-
cess. The current version of the QoS monitor supports network-specific global
parameters, relying on OpenStack to periodically monitor the throughput,
latency, package loss, error rate and availability of the SCO.

Services Monitor – As mentioned before, service developers are able to create
new services or update the functional requirements of their services. These

updates have to be considered during the planning phase in order to guar-
antee the optimality of the final composition. This component observes the
service directory and notifies changes to the adaptation analyzer.

Execution Monitor – During the execution of a composite service several is-
sues may arise (e.g., timeout exception, network exception, the returned
values does not have the right format). This module reports the tracked
issues to the adaptation analyzer, which then initiates the most appropri-
ate recovery process, e.g., replacing unavailable services with similar ones or
generating a new sub compositions.

Context Monitor captures changes in the context of the adaption system.
This monitoring is done to be able to adapt to changing conditions in the
environment, e.g., changing legal rules of the planning domain.

6 Summary and Future Work

In this paper, we present the concept of our ISCO framework, a holistic ap-
proach for service discovery and composition in smart cities. The current effort
focuses on providing an ecosystem that eases the implementation and deploy-
ment of dynamic and self-adaptive software. Our ongoing work tackles the com-
mon challenges IoT projects face, which are mainly the lack of integrity and
interoperability of cross-domain platforms. The unified SCO, the service direc-
tory and the service composition and planning layers are the main components
of this middleware. We are currently working towards the development of the
different components, and once completed, the adaption capabilities and scala-
bility of the system will be tested in a heterogeneous dynamic testbed with both
physical and simulated devices.

References

1. Bibri, S.E., Krogstie, J.: Ict of the new wave of computing for sustainable ur-
ban forms: Their big data and context-aware augmented typologies and design
concepts. Sustainable Cities and Society 32(Supplement C) (2017) 449 – 474

2. Gharaibeh, A., Salahuddin, M.A., Hussini, S.J., Khreishah, A., Khalil, I., Guizani,
M., Al-Fuqaha, A.: Smart cities: A survey on data management, security, and en-
abling technologies. IEEE Communications Surveys Tutorials 19(4) (Fourthquar-
ter 2017) 2456–2501

3. Brandt, T., Donnellan, B., Ketter, W., Watson, R.T.: Information systems and
smarter cities: Towards an integrative framework and a research agenda for the
discipline. In: AIS Pre-ICIS Workshop-ISCA 2016. (2016)

4. Manville, C., Cochrane, G., Cave, J., Millard, J., Pederson, J.K., Thaarup, R.K.,
Liebe, A., Wissner, M., Massink, R., Kotterink, B.: Mapping smart cities in the
eu. (2014)

5. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (iot): A
vision, architectural elements, and future directions. Future Generation Computer
Systems 29(7) (2013) 1645 – 1660

6. Arasteh, H., Hosseinnezhad, V., Loia, V., Tommasetti, A., Troisi, O., Shafie-khah,
M., Siano, P.: Iot-based smart cities: A survey. In: 2016 IEEE 16th International
Conference on Environment and Electrical Engineering (EEEIC). (June 2016) 1–6

7. Opdahl, A.L., Henderson-Sellers, B.: Grounding the oml metamodel in ontology.
Journal of Systems and Software 57(2) (2001) 119 – 143

8. Bermudez-Edo, M., Elsaleh, T., Barnaghi, P., Taylor, K.: Iot-lite: a lightweight
semantic model for the internet of things. In: IEEE International conference on
Ubiquitous Intelligence and computing, IEEE (2016) 90–97

9. Burstein, M., Hobbs, J., Lassila, O., Mcdermott, D., Mcilraith, S., Narayanan, S.,
Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: OWL-S:
Semantic Markup for Web Services. Website (November 2004)

10. Domingue, J., Roman, D., Stollberg, M.: Web service modeling ontology (wsmo)-an
ontology for semantic web services (2005)

11. McGuinness, D., van Harmelen, F.: OWL Web Ontology Language Overview.
Technical report, W3C (2004) http://www.w3.org/TR/owl-features/.

12. Nambi, S.A.U., Sarkar, C., Prasad, R.V., Rahim, A.: A unified semantic knowledge
base for iot. In: Internet of Things (WF-IoT), 2014 IEEE World Forum on, IEEE
(2014) 575–580

13. Neirotti, P., De Marco, A., Cagliano, A.C., Mangano, G., Scorrano, F.: Current
trends in smart city initiatives: Some stylised facts. Cities 38 (2014) 25–36

14. Tran, V.X., Tsuji, H.: A survey and analysis on semantics in qos for web ser-
vices. In: Advanced Information Networking and Applications, 2009. AINA’09.
International Conference on, IEEE (2009) 379–385

15. Kritikos, K., Pernici, B., Plebani, P., Cappiello, C., Comuzzi, M., Benrernou, S.,
Brandic, I., Kertész, A., Parkin, M., Carro, M.: A survey on service quality de-
scription. ACM Computing Surveys (CSUR) 46(1) (2013) 1

16. GS1: GS1 Object Name Service (ONS) Version 2.0.1. Ratified Standard 2 (2013)
17. : Ccn lite: Lightweight implementation of the content centric networking protocol.

http://ccn-lite.net Accessed: 2017-11-30.
18. Verborgh, R., Steiner, T., Van Deursen, D., De Roo, J., Walle, R.V.d.,

Gabarró Vallés, J.: Capturing the functionality of web services with functional
descriptions. Multimedia Tools and Applications 64(2) (May 2013) 365–387

19. Abdullahi, I., Arif, S., Hassan, S.: Survey on caching approaches in information cen-
tric networking. Journal of Network and Computer Applications 56(Supplement
C) (2015) 48 – 59

20. Sheng, Q.Z., Qiao, X., Vasilakos, A.V., Szabo, C., Bourne, S., Xu, X.: Web services
composition: A decades overview. Information Sciences 280(Supplement C) (2014)
218 – 238

21. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1)
(January 2003) 41–50

22. Villegas, N., Tamura, G., Müller, H., Duchien, L., Casallas, R.: DYNAMICO: A
Reference Model for Governing Control Objectives and Context Relevance in Self-
Adaptive Software Systems. In: Software Engineering for Self-Adaptive Systems
2. Volume 7475 of LNCS. Springer (August 2012) 265–293

23. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: Qos-
aware middleware for web services composition. IEEE Transactions on software
engineering 30(5) (2004) 311–327

24. Hoffmann, J.: Ff: The fast-forward planning system. 22 (09 2001) 57–62
25. Pearl, J.: Heuristics. Intelligent search strategies for computer problem solving.

The Addison-Wesley Series in Artificial Intelligence (1985)

